Enterococcus faecium NCIMB 10415 Modulates Epithelial Integrity, Heat Shock Protein, and Proinflammatory Cytokine Response in Intestinal Cells
نویسندگان
چکیده
Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium), a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli) strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2) and human (Caco-2) intestinal cells were incubated without bacteria (control), with E. faecium, with enteropathogenic (EPEC) or enterotoxigenic E. coli (ETEC) each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER) and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.
منابع مشابه
Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model
The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incu...
متن کاملAltered Cytokine Expression and Barrier Properties after In Vitro Infection of Porcine Epithelial Cells with Enterotoxigenic Escherichia coli and Probiotic Enterococcus faecium
The aim of the present study was to elucidate the effects of the probiotic feed additive Enterococcus faecium NCIMB 10415 (E. faecium) on porcine jejunal epithelial cells (IPEC-J2) during an in vitro challenge with enterotoxigenic Escherichia coli (ETEC). Cells were incubated with E. faecium, ETEC, or both, and the effects on barrier function and structure and intra- and intercellular signaling...
متن کاملInfluence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection model.
The beneficial effects of probiotic Enterococcus spp. in different hosts, such as mice and humans, have previously been reported in several studies. However, studies of large domestic animals, as well as challenge studies with pathogenic microorganisms, are very rare. Here, we investigated the influence of oral treatment of pigs with the probiotic bacterium Enterococcus faecium NCIMB 10415 on S...
متن کاملDietary Enterococcus faecium NCIMB 10415 and Zinc Oxide Stimulate Immune Reactions to Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response upon Challenge Infection
Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels o...
متن کاملProbiotic Treatment Decreases the Number of CD14-Expressing Cells in Porcine Milk Which Correlates with Several Intestinal Immune Parameters in the Piglets
Modulating the mucosal immune system of neonates by probiotic treatment of their mothers is a promising approach which can only be investigated through the use of animal models. Here, we used sows and their piglets to investigate the impact of a bacterial treatment on the sow's milk and on the neonate piglet intestinal immune system. In previous experiments, feed supplementation of sows with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015